Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139908

RESUMO

Two-color lasing emission from an asymmetric structure, consisting of two dye-doped cholesteric liquid crystal (DD-CLC) layers separated by a transparent interlayer, is demonstrated. The DD-CLC mixtures have different reflection bands with long-wavelength band edges located at the green and red wavelengths of the visible spectrum, respectively. For the laser action, the CLC hosts provide the feedback, and the fluorescent laser dyes represent the active medium. When the stacked structure is optically pumped above the threshold, two simultaneous laser lines separated by 123 nm are observed at the long-wavelength band edges of the DD-CLC mixtures. The influence of an electric field on lasing behavior is also analyzed and discussed in terms of the reflection spectrum and laser action. The results show a reversible tuning of the reflection band, accompanied by a modification of the lasing characteristics under the application of an external field. Above a specific threshold voltage, one of the emission lines is suppressed and the other is conserved. With a further increase in the voltage, both laser emissions are entirely inhibited. The investigated structure demonstrates a simple technique to obtain an electrically tunable multi-wavelength laser, which might pave the way for a new generation of organic laser sources.

2.
J Bionic Eng ; : 1-19, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37361682

RESUMO

Nowadays, meta-heuristic algorithms are attracting widespread interest in solving high-dimensional nonlinear optimization problems. In this paper, a COVID-19 prevention-inspired bionic optimization algorithm, named Coronavirus Mask Protection Algorithm (CMPA), is proposed based on the virus transmission of COVID-19. The main inspiration for the CMPA originated from human self-protection behavior against COVID-19. In CMPA, the process of infection and immunity consists of three phases, including the infection stage, diffusion stage, and immune stage. Notably, wearing masks correctly and safe social distancing are two essential factors for humans to protect themselves, which are similar to the exploration and exploitation in optimization algorithms. This study simulates the self-protection behavior mathematically and offers an optimization algorithm. The performance of the proposed CMPA is evaluated and compared to other state-of-the-art metaheuristic optimizers using benchmark functions, CEC2020 suite problems, and three truss design problems. The statistical results demonstrate that the CMPA is more competitive among these state-of-the-art algorithms. Further, the CMPA is performed to identify the parameters of the main girder of a gantry crane. Results show that the mass and deflection of the main girder can be improved by 16.44% and 7.49%, respectively.

3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904467

RESUMO

We investigate the laser emission from a polymer-cholesteric liquid crystal superstructure with coexisting opposite chiralities fabricated by refilling a right-handed polymeric scaffold with a left-handed cholesteric liquid crystalline material. The superstructure exhibits two photonic band gaps corresponding to the right- and left-circularly polarized light. By adding a suitable dye, dual-wavelength lasing with orthogonal circular polarizations is realized in this single-layer structure. The wavelength of the left-circularly polarized laser emission is thermally tunable, while the wavelength of the right-circularly polarized emission is relatively stable. Due to its relative simplicity and tunability characteristics, our design might have broad application prospects in various fields of photonics and display technology.

4.
Opt Express ; 30(3): 4381-4391, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209676

RESUMO

We propose a new kind of reconfigurable topological valley photonic crystal (TVPC), and a novel topological waveguide can be formed by constructing a domain wall between two TVPCs with opposite valley-Chern indices. The topological waveguide mode in the composite TVPC has large group refractive index. A topologically protected coupled waveguide cavity system is then designed by introducing a hexagonal ring cavity at the center of the straight domain wall of a combined TVPC, in which a narrow plasmon induced transparency window rises at 3.8848 GHz with a Q-factor of 1387 and a maximum group refractive index as high as 186. We propose a notch filter with a resonant frequency of 3.8852 GHz and a very high Q-factor of 10224. By changing the refractive index of liquid crystals via an external voltage applied between two parallel metal plates, the filter can be switched between band-pass and band-stop based on the reconfigurable topological interface state.

5.
Nanotechnology ; 33(8)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787100

RESUMO

Strain engineering can effectively modify the materials lattice parameters at atomic scale, hence it has become an efficient method for tuning the physical properties of two-dimensional (2D) materials. The study of the strain regulated interlayer coupling is deserved for different kinds of heterostructures. Here, we systematically studied the strain engineering of WSe2/WS2heterostructures as well as their constituent monolayers. The measured Raman and photoluminescence spectra demonstrate that the strain can evidently modulate the phonon energy and exciton emission of monolayer WSe2and WS2as well as the WSe2/WS2heterostructures. The tensile strain can tune the electronic band structure of WSe2/WS2heterostructure, as well as enhance the interlayer coupling. It is further revealed that the photoluminescence intensity ratio of WS2to WSe2in our WSe2/WS2heterobilayer increases monotonically with tensile strain. These findings can broaden the understanding and practical application of strain engineering in 2D materials with nanometer-scale resolution.

6.
Opt Express ; 29(13): 19531-19539, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266062

RESUMO

In this work, we study topological edge and corner states in two-dimensional (2D) Su-Schrieffer-Heeger lattices from designer surface plasmon crystals (DSPCs), where the vertical confinement of the designer surface plasmons enables signal detection without the need of additional covers for the sample. In particular, the formation of higher-order topological insulator can be determined by the two-dimensional Zak phase, and the zero-dimensional subwavelength corner states are found in the designed DSPCs at the terahertz (THz) frequency band together with the edge states. Moreover, the corner state frequency can be tuned by modifying the defect strength, i.e., the location or diameter of the corner pillars. This work may provide a new approach for confining THz waves in DSPCs, which is promising for the development of THz topological photonic integrated devices with high compactness, robustness and tunability.

7.
Opt Express ; 28(17): 24772-24788, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907010

RESUMO

Many plasmon-induced transparency (PIT) metamaterials previously reported had limited functions. Their tunabilities were realized by complex discrete structures, which greatly increased the difficulty and cost of device fabrication and adversely affected their resonance characteristics. It is an open question to adjust the Fermi levels of many graphene patterns with only a few in-plane electrodes. We propose and numerically study a novel electrically tunable and multifunctional trigate graphene metamaterial (TGGM) based on the concept of "Lakes of Wada". Benefiting from the trigate regulation, our proposed TGGM turns out to exhibit excellent characteristics, that can not only be used for terahertz band-stop filter, terahertz refractive index sensor, near-field optical switch, slow-light device, but also for double PIT window metamaterial with broad transparency windows and large tunable frequency range.

8.
Artigo em Inglês | MEDLINE | ID: mdl-12369642

RESUMO

Coal bottom ash produced from a thermal power plant was used in a batch experiment to investigate the adsorption characteristic of this bottom ash. The adsorbate solutions were synthetic wastewaters contained copper (Cu2+) or COD and a sanitary landfill leachate. The influences of various factors, such as contact time, pH, initial adsorbate concentration and temperature on the sorption have been studied. Experimental results show that coal bottom ash had a good adsorption capacity for copper and COD and could reduce the concentrations of various pollutants in the leachate. The adsorption capacities of each gram of coal bottom ash were 0.48 mg Cu (at pH 4 and temperature 25 degrees C) and 7.5 mg COD (at pH 5 and temperature 25 degrees C); their adsorption behaviors conformed to Freundlich's adsorption model. In treating leachate, the removal efficiencies of COD, NH3--N, total Kjeldah nitrogen, phosphorus, Fe3+, Mn2+ and Zn2+ were 47, 39.4, 31.1, 92.9, 96.5, 94.3 and 82.2%, respectively. Based on these results we can conclude that it is possible to use coal bottom ash for removing pollutants from wastewaters. The adsorption capacities of coal bottom ash for pollutants were also determined.


Assuntos
Carbono/química , Carvão Mineral , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Cinza de Carvão , Cobre/análise , Concentração de Íons de Hidrogênio , Material Particulado , Taiwan , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...